
AD-ABU 904 AIR FORCE INST OF TECH WRIGHT-PATTERSON Aft OH SCHOO-EYC F/9 11/4
CBUCKLZNG ANALYSIS OF LAMINATED COMPOSITE CIRCULAR CYLINDRICAL S-E&¢(U)OF[C 7S JO N ARPErR

UNCLASSIFIED AFITISAE/AA/780-8 NL

IEEEIIIEEEinuunuuunu

--- 8



AFIT/GAE/AA/ 78D-8

BUCKLINC A~NALYSIS OF LAMITNATED COM'POSITE

CIRCULAR CYLINDRICAL HEL

THESIS

AFIT/GAE/AA/78D-8" MAMES G. HARPER, IT

2Lt. USAF

~~LEOT ft
\N.MAR 8

VA

Approved Zor public release; distribution unlimited.



EjAFI/GAE/A/78D-8

BUCUING ANALYSIS OF LAMINATED COMPOSITE

CIRCULAR CYLINDRICAL SHELLSe

I'

THESIS

Presented to the Faculty of the School cf Engineering /

of the Air Force Institute of Techrology

Air University (ATC)

in Partial Fulfillment of the

CRequirements for the Degree of
Master of Science

by

/ James G. Harper, I

2Lt USAF ) A-

Graduate Aeronautical Engineering

I Decelb L978

Approved for public release; distribution unlimited.

C

/x'.- --,>



C Preface

I wish to express my extreme gratitude to Dr. Anthony Palazotto

for his patience and expert guidance throughout this thesis.

Many thanks to Nick Bernstein and Nick Neigard for their

invaluable assistance with STAGS.

To my neglected wife, who I love dearly, I wish to thank for all

the love she has given to me.

ij~fl

iii



Contents

Page

Preface.................. .. . . ..... . . ... .. .. .. . . ...

List of Figures. ..... .................... iv

Symbols .. .............................. v

Abstract. ............................. viii

I. Introduction. ..........................

Previous Work .. ..........................
Problem Definition. ...................... 2
Scope .. ............................. 3

-~II. Theory .. ............................ 6

Bifurcation Buckling. ..................... 6
Theory of STAGS.................. . . ..... . .. .. .. .....

III. Modeling .... ....................... 15

Boundary Conditions. ...... ............... 15
*Basic Shell Models ...... ................ 15

Finite Difference Mesh Arrangements. ...... ....... 20

IV. Results ..... ....................... 22

Shell Buckling Without Prebuckling ..... ......... 22
Prebuckling Effects for Compression. .... ......... 23
Prebuckling Effects for Torsion. .... ........... 26

V. Conclusions. .... ...................... 30

Bibliography ..... ....................... 32

Appendix A: Series Solutions Without Prebuckling. .. ...... 34

Appendix B: User Problems with STAGS. .... .......... 37

Appendix C: Buckling Loads and Buckling Load Ratios. ....... 39

Vita .. .............................. 44



List of Figures

Figure Page

1 (+, OO)s Ply Orientation. .. ............. 4

2 Sign Conventions and Notation .... .......... 5

3 Load-Displacement Curve for Bifurcation .. ....... 7

4 Clamped Boundary Conditions. .............. 16

1.5 1/8 Shell Model for Axial Compression. ......... 18

7 Prebuckling Effect--Axial Compression. ......... 24

8 Prebuciding Effect--Torsion, L/R = 7. ...... .... 27

9 Prebuckling Effect--Torsion, L/R = 12. ......... 29

iv



Symbols

a undeformed middle surface radius

ai area of ith mesh subregion

[ A linear (stretching) stiffness matrixF'j
Bij bending-stretching coupling stiffness matrix

SDij bending stiffness matrix

Dk matrix of constants that depend on material properties

EL longitudinal modulus of elasticity of fiber

ET  transverse modulus of elasticity of fiber

F vector of external forces

Fcr critical load

FL linear force vector

GLT shear modulus

H, h shell wall thickness

k mesh station

L shell length

L( ) stiffness operator

L'( ) derivative of stiffness operator

M 1/2 sine waves in axial direction

Mx, my, Mxy buckling moment resultants

N sine waves in circumferential direction

N characteristic loading parameter

Nx, Ny, Nxy buckling stress resultants

i N, Ni  prebuckling membrane force resultants

NXSS' Nxess buckling loads determined by series solution
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Pb bifurcation buckling load

Qi transformed reduced stiffness matrix
ij

R shell radius

SL kvector of linear stress resultants at station k

t laminate thickness

u, v, w displacements in x, y, z directions respectively

o v inplane displacements of middle surface

' IU strain energy

AUk strain energy density at station k

V total potential energy

w,x, wy rotations relative to y and x directions respectively

W work done by external forces

x, y, z coordinates in axial, circumferential and radial direction
respectively

X* vector of displacement components

XL  linear solution for a load vector L

Xo  solution for a load vector F

Z layer thickness

ZkT transpose matrix of strains and curvatures at mesh
station k

8 rotation

YLT ply shear strain allowable

Yx1 shear strain

J ij strain tensor

EL longitudinal ply strain allowable

CT transverse ply strain allowable

9 ply orientation
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K curvature

X eigenvalue

V Poisson's ratio

ai stress tensor

TxO shear stress
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Abstract

The effects of prebuckling displacements on the buckling of

laminated composite circular cylindrical shells are investigated.

Both axial compression and pure torsion are considered for two shell

geometries. A clamped prebuckling boundary condition is used for all

analysis with four buckling boundary conditions applied during the

4 buckling process. The shell walls are made up of a 6 ply laminate

with several symmetric ply orientations. The study was made using

the STAGS computer code, utilizing the linear bifurcation branch with

linear prebuckling displacements. The results are compared to the

buckling loads determined when prebuckling displacements are neglected.

It is shown that prebuckling deformations generally tend to decrease

the buckling load of a composite shell. Increased buckling loads can

occur under axial compression with prebuckling displacements assumed

present, for particular ply orientations, due to a higher bending

stiffness. Similarly, under torsion, an increase in buckling load

can occur because of a higher tension hoop stress. It is also shown

that prebuckling displacements can cause shell buckling before failure

of the fibers occurs.
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BUCKLI;G ANALYSIS OF LAMINATED COMPOSITE

CIRCULAR CYLINDRICAL SHELLS

I. Introduction

4Previous Work

Laminated composite materials, due to their high strength and

lightweight properties, are rapidly replacing metals in many structural

applications. A widely used structural element, the circular cylin-

drical shell, is commonly maae of various metals for such applications

as missile interstage and intertank structures; missile payload,

guidance and control adapters; satellite components; and aircraft.

Studie3 have shown Ref (1) that composites reinforced by advanced

high modulus fibers such as boron and graphite permit weight savings

of 25-40% over competing metallic designs. These advanced composite

materials are being used or considered for use in many military and

civilian vehicles such as the F-ll, F-14, F-15, F-16, F-18, C-5A

and space shuttle.

With the high strength and lightweight properties of composites,

it can be seen that the detail study of composite cylindrical shells

is important. One major area of concern with any structural element

is with buckling. Generally, composite shells will have post-buckling

strength and integrity, however excessive buckling can lead to failure

due to exceeding maximum strain requirements or, if loads are repeated,

exceeding the fatigue life. There has been a great deal of work done

studying the buckling of isotropic cylindrical shells. Investigations

C
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of how the bucklirg strength is altered due to variations in the

diameter to thickness ratio, length to radius ratio, initial imper-

fections, prebuckling deformations and buckling boundary conditions

for a variety of loading conditions, has been done. For a complete

list of references on buckling of isotropic shells, see Reference (2).

Jones and Hennemann (1) invescigated the effects of prebuckling

deformations on buckling of laminated composite circular cylindrical

shells. For a variety of antisymmetric cross ply orientations, they

looked at a simply supported edge boundary condition. The effects of

prebuckling displacements were found to be negligible for buckling

analysis, and they suspected similar results for all other boundary

conditions. Further work done on stability of composite shells can

be found in References (3)-(9).

Problem Definition

The purpose of this thesis is to investigate how prebuckling

displacements effect the buckling of composite shells for two length

to radius ratios. Each geometry is studied first under axial

compression and then torsion. Along with the geometric instability,

a second area investigated is material instability. Different ply

orientations for 6 ply laminates are studied to compare buckling loads

to composite strengths as estimated from maximum strain criteria. The

shell dimensions considered in this thesis are typical of current

laboratory tubular specimens presently being tested.

Using classical Fourier analysis in conjunction with Flugge's

shell equations modified for anisotropic laminated materials, Whitney

2



and Sun (10) have obtained buckling loads for the same shells

considered in this thesis. The development of these equations is

shown in Appendix A. Their results suggest that buckling is a

potential problem for tubular specimens. This thesis takes into

account prebuckling deformations that Whitney and Sun neglected.

Scope

This thesis looks at two composite circular cylindrical shells,

under two independently applied loads, axial compression and pure

torsion. Both shells have a 6 ply laminate with (+ 0, 00)s orientation,

illustrated in Figure 1. Computer runs are made for 0 ranging from 00

to 900. The buckling boundary conditions are clamped and summarized

as follows:

W,
': U VWX

CCI FREE FREE 0 0

CC2 0 FREE 0 0

CC3 FREE 0 0 0

CC4 0 0 0 0

where u, v and w are displacements in the axial, circumferential and

radial directions respectively, as shown in Figure 2. The prebuckling

boundary condition used for all cases is CCl. The linear bifurcation

branch of the STAGS-C computer code is used, incorporating linear

prebuckling deformations.

3
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C II. Theory

Bifurcation Buckling

Since the linear bifurcation branch of STAGS is used in this

investigation, it is appropriate to first discuss the concept of

bifurcation buckling. In general, buckling can be defined as a

structural deformation due initially to instability under load

(Ref 11). It does not matter whether the deformation is elastic

or permanent, or whether it leads immediately to collapse or not.

For a bifurcation type of buckling, a structure is said to rapidly

move from one equilibrium state to another.

Consider the case of the cylindrical shell, subjected to a

load P. The load increases monotonically from an initial value

Cof zero. Assume that for sufficiently small values of P, there

exists a unique solution to the shell's equilibrium problem. The

equilibrium configuration given by this solution is called the

primary state or prebuckled state. Then take some value of P, say

P - P b where there exists another equilibrium configuration that

is infinitesimally close to the primary state. The existence of

two adjacent infinitesimally close equilibrium configurations at

the same value of the load P = P is called bifurcation, and P
bb

is called the bifurcation buckling load. This can be illustrated by

the curve in Figure 3, in which P is plotted against lateral displace-

ment 5. At each point on the curve an equilibrium configuration exists.

The bifurcation point is the point of intersection of the primary path,

which starts at the origin and is initially stable, and the secondary

.c-
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Figure 3. Load-Displacement Curve for Bifurcation



path at P = Pb* Since the stability on the primary path is lost

Cabove the bifurcation point, the shell will either deform into the
equilibrium configuration on the secondary path, or it will be set

into motion. The new equilibrium configuration on the secondary

(post buckled) path is called the buckled state Ref (12).

The bifurcation buckling load Pb can be determined by different

methods. STAGS uses finite-difference approximations of energy

equations and solves an eigenvalue problem. This procedure will be

described in the section that follows.

Theory of STAGS

STAGS (Structural Analysis of General Shells) is a computer code,

developed to analyze general shells under various static, thermal and

mechanical loading. The apprcach used by STAGS is a two-dimensional

finite difference approximation of energy relations. For this thesis,

the problem is for a circular cylindrical shell, with laminated

composite fibers oriented in a number of directions. The applied

loads are static, and thus the case of static equilibrium must be

solved. A necessary condition for static equilibrium is that the

total potential energy V, must be stationary, which means the first

variation of V is equal to zero. The total potential energy of the

shell is equal to the strain energy U, of the shell minus the work

done by the external forces W,

V -U- W (1)

where

W X" F

C8



X* is the vector of displacement components and F is the vector of

C external forces.

The strain energy for an orthotropic cylindrical thin shell is

given by

U 2 (CIxC x + G8e: e + TxeYx8 ) dxdy (3)

where the strain terms ex, ce and yx are given by

1

x U,x +  8x 2  x= -w,x

v,e + w 1 w,eCe a +T 802  80 =- a(4

Yxe + v,) + aa

The quantities u, v and w are displacement components in the x, 0 and

directions respectively, and "a" is the undeformed middle surface

radius. The stress terms are found by

[aj ] - j ] [ j ] ij = 1,2,6 (5)

where e, 2' C6 9 Ol" 2' and 06 are defined as e ' 0, Yx' x, 06

and Tx8 respectively. The matrix Qij is called the transformed

reduced stiffness matrix (see Ref (13) for more detailed analysis

of Q i).

For the case of the angle ply laminate, the stiffness matrix will

be different for each layer. It is therefore necessary to look at

the resultant forces and moments acting on the laminate. These are

obtained by integrating the stresses in each layer through the

. c9



N-layered laminate thickness as follows

ft/2 N (ZR
Ni  J oidz I f Cidz i = 1,2,6 (6)

-t/2 K=I ZK 1

. iand

t/2 ZK

41= Zod <8'1=1,, 7

'.3Using the relations for the change in curvatures:

K x x,x K a
(8)

.1 ( x, E)
xe = 2( x

and combining this with Eqs (4) and (5), Eqs (6) and (7) become in

matrix form

.NiJ = AiLBij ~ 11 i,j = 1,2,6 (9)L,, Bij DijK L,:iJ

where the stretching, bending-stretching coupling, and bending

stiffness submatrices are defined as

t12

(Aij, Bij, Dij) = 1 (1, Z, Z2 ) Qijdz (10)
-t /2

For the shell that is laminated symmetrically with respect to the

middle surface, as is the case in this thesis, the bending-stretching

submatrix Bij equals zero. This yields the following expressions for

middle surface strains

{EJ °0 }  [Aij ] {Ni} (11)

C10



(and curvatures

1 j-1 {Mi} (12)

With the middle surface strains and curvatures, the total strains at

an arbitrary distance z from the middle surface are

" C £ + zKj J - 1,2,6 (13)

Using Eqs (13) and (5), all the terms in the strain energy are now

known. In order to approximate the strain energy and thus the total

potential energy, STAGS models the shell structure by placing mesh

lines paralled to the x and y coordinate lines. The intersection of

these mesh lines represent nodes or mesh stations i, and the area

bounded by mesh lines would be a; the area of the ith subregion. The

(" total strain energy would then be given by

M ui  ai (14)
i

where M is the number of mesh stations and Au , which is the integrand

of Eq (3), is the strain energy density at mesh station i. With the

work W, and strain energy U, now given in terms of the unknown

displacements, STAGS replaces finite difference approximations for

those displacements in the total potential energy V, given by Eq (1).

* As previously stated, for the condition of stationary potential

energy, the first variation must vanish. This leads to the equation

LX - F (15)

1



Cwhere L is a stiffness operator which relates displacement components
and external forces, and is defined as

LX = GRAD U (16)

Since only the linear terms are included in the deformations of strain

and curvature, then for linear bifurcation theory, L is a linear

operator represented in matrix form.

For the bifurcation problem let X be a solution of Eq (15) for

a given external force vector F. If another displacement vector Y,

in every neighborhood of X satisfies the equation

LY = F (17)

then bifurcation is said to take place for the shell under load F.

C Since Eq (15) can have multiple solutions, a necessary condition for

bifurcation required that L'Xo, which is the derivative of the stiffness

operator, be a singular matrix. This leads to

det (L'Xo) 0 (18)

from which classical bifurcation theory may be obtained. It is then

assumed that X0 may be written as

x X L (19)

where X is the linear solution for a load vector FL. Thus Eq (18)

becomes

det (L' ) fi 0 (20)

12



II

Eq (20) represents an algebraic eigenvalue problem. Omitting the

IC nonlinear prebuckling rotations for linear bifurcation theory,

Eq (20) becomes

det (A - XD) = 0 (21)

this leads to the following eigenvalue problem

AX = XDX (22)

1

where A is the linear stiffness matrix, and D is the bending stiffness

matrix. Briefly, the formation of the A and D matrix is as follows.

Consider the stiffness operator derivative L'xo, which represents the

coefficient matrix for the linear system of governing algebraic

equations where the nodal displacements are the unknowns. The elements

of L'Xo are given by

C 32U

L'ij - (23)

Applying Eq (23) to Eq (14) yields

32U  M k ;AU k

a a I a k a (24)

i Xj k=l i j

The strain energy density AUk can be written

AUk z kTDkU k (25)

where the matrix Zk represents the strains and curvatures at mesh

station k and Dk is a matrix of constants that depend on the material

properties. Recall the integrand of Eq (3) is the strain energy

C 13



density for the cylindrical shell. The vector of linear stress

resultants at station k is defined as

s k = Dk zk (26)
L

Incorporating Eqs (25) and (26) together, the kth term of Eq (24) is

;2Auk a2zkT k kT D k

a a - XSL I+--D aD (27)Sxi x a xiaxj a X i  a X

For the case of neglected prebuckling notations, the last term

of Eq (27) generates the linear stiffness matrix A. The first term of

Eq (27) contributes to the bending stiffness matrix D. The critical

load F is determined when the smallest eigenvalue X is found that
CR

satisfies Eq (21). The critical load is a multiple of the linear

force vector FL

F = XF L  (28)

Ref (14) shows a more detailed analysis of the eigenvalue problem.

14



III. Modeling

Boundary Conditions

There are four clamped boundary conditions used in this thesis

referred to as CCl, CC2, CC3 and CC4 (see Fig 4 for a physical

representation). Rollers allow freedom of movement while flanges

restrict displacement perpendicular to the plane of the flange.

Due to the restraining moments of a clamped condition the slope

W, is zero at the shell boundary. Notice also that the displacement

w, is zero at the boundary for all four cases.

STAGS models these four boundary conditions by allowing or

restraining the particular displacements. The Nx = 0 and Nxy = 0

conditions are specified by allowing u and v respectively to be free.

The u = 0, v = 0, w = 0, and w,, = 0 restraints are specified directly

by setting the appropriate edge quantity to zero. STAGS also has

several built-in boundary conditions. One of them was used in this

thesis, referred to as symmetry. Symmetry means that a boundary lying

along the y or circumferential direction has u = w,x = 0, and a

boundary lying along the x or axial direction has v = wy = 0.

See Fig 5.

Basic Shell Models

As previously stated, there are two L/R ratios studied in this

thesis. Each shell geometry has a radius (R) of 5.25" and a thickness

(h) of .5". The L/R ratios considered are 12 and 7, yielding a length

(L) of 63" and 36.75" respectively. For each shell there are two

loading arrangements applied independently, axial compression and

C 15



ccl

w=O W,XOC NX=O NKy!O

002

W=O W,)(=0 u 0 Nxy 0

NI,\H
1 1\ i,

003 004

W=O w.X:O NX=O V=O 0: ,~ ~ :

Figure 4. Clamped Boundary Conditions (from Ref (15))
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torsion. Due to the nature of the loads, the shell model for each

load was different and will now be presented.

For the case of axial compression, a constant line load was

applied to the shell. Due to the symmetry of the loaded shell, only

1/8 of the shell was modeled. The only difference between the model

for L/R = 12 and L/R = 7 is the value of L/2 (see Fig 5). The

boundary condition for each boundary, as seen in Fig 5, is as follows:

For boundary 1, which is the top of the shell, the conditions are

specified according to the particular boundary condition being

investigated. All prebuckling boundary conditions are Cc, and

buckling boundary conditions are CC, CC2, CC3 and CC4. Boundaries

2, 3, and 4 are considered to be symmetry.

For the case of torsion, due to the fact that symmetry of

displacement is not present, the whole shell had to be modeled

(see Fig 6). A problem arose that indicated a rigid body mode, and

thus it became necessary to improve the model. It was determined

that fixing the circumferential displacement v, of at least one node

on a boundary would alleviate the rigid body problem. Some sample

runs indicated that holding all the nodes of one edge fixed in the

v direction made for a better model than just fixing one node. This

was taken care of for that edge by letting v = 0 in the boundary

conditions. Also, no shear for that edge was applied since it was

fixed in the circumferential direction, which yields the same as

applying the shear (see Appendix B).

For L/R = 7, the shear was applied to the top edge. The boundary

conditions for the top and bottom edge were the same conditions used

17
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C Figure 5. 1/8 Shell Model for Axial Compression
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in axial compression, CM1 prebuckling and CC through CC4 buckling.

The only difference being the added constraint of v = 0 along the

bottom edge. What were called boundaries 2 and 4 for the 1/8 shell

model, are not really boundaries for the whole shell. There is an

option in STAGS that allows two boundaries to have compatible

displacements, since there must be an allowance for four boundaries.

This option takes care of the treatment of the whole shell.

The L/R = 12 geometry had the same model with the exception of a

different mesh size. The mesh sizes will be discussed in the section

that follows.

Both shells considered were made of graphite/epoxy composites,

with the following material properties

EL 20 x 106psi, ET = 106psi, GLT = 0.6 x 106psi, =LT 0.25

where L denotes the direction parallel to the fibers, T denotes the

direction transverse to the fibers, and vLT is the Poisson ratio as

determined from a tensile test parallel to the fibers (Ref 10).

The laminates for each shell were 6 ply and oriented by (+ 8, O°)s.

6 was 0, 15° , 30 ,45 ° , 60, 75 and 900

Finite Difference Mesh Arrangements

There were four different mesh arrangements used in this thesis.

For the 1/8 shell model, 210 nodes at a mesh size of .92" x .92" were

used for the L/R = 7, and 340 nodes at a mesh size of .92" x .95" for

L/R = 12. An attempt to test the accuracy obtained by these mesh sizes

was made by tripling the number of nodes (which almost tripled the

2
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computer cost). This smaller mesh size gave a higher buckling load

of less than only 1.5% which, for the additional cost, is an

insignificant increase in accuracy. Decreasing the number of nodes

by 30% gave only 2 or 3 nodes per 1/2 sine wave. It was felt that

5 or 6 nodes per 1/2 sine wave were necessary for any accuracy

Ref (15), and this was achieved by the aforementioned mesh arrangements.

WFor the whole shell model, a problem of ill-conditioned variables

arose for both geometries. The L/R = 7 case was modeled with 1054

nodes giving a mesh size of 1.11" x 1.06". This mesh arrangement was

used for all angles except =00. At 9 = 00, ill-conditioned

variables in the stiffness matrix caused the matrix decomposition to

be discontinued prematurely (see Appendix B). This was a problem

for angles 9, less than 80. At 80, the analysis was successful, and

from this and other results, the buckling load at 8 = 00 was

extrapolated. The L/R = 12 model initially had 989 nodes at a

mesh size of 1.47" x 1.50", but this mesh arrangement yielded ill-

conditioned stiffness matrix for most all angles of 8. The number

of nodes was increased to 1128 giving a mesh size of 1.37" x 1.37".

The latter arrangement worked for all angles 6 except 00. The

identical procedure used in obtaining the buckling load at 8 = 00

for L/R = 7, was used here for L/R = 12.

21
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IV. Results

Shell Buckling Without Prebuckling

The problem of determining the buckling load for a composite

cylindrical shell, without taking into account the prebuckling

deformations, can be done by using a series solution. This approach

was taken for an L/R = 12, by Whitney and Sun (10), for both axial

compression and torsion, and is given in Appendix A.

Whitney and Sun took the buckling loads, obtained by the series

solution, and normalized them for specific ratios of L/R and R/h.

This was done by dividing the buckling load by the product of

transverse modulus of elasticity of the fibers E and shell wall

thickness h. This normalized load would then hold for any shell of

C length L, radius R, and thickness h, provided the ratios of L/R and

R/h remained the same. The normalized loads were then plotted against

the ply orientations e. Included in the graphs were an estimated

strength based on maximum strain criterion, as presented by Petit

and Waddoups (16). Ply strain allowables chosen for the maximum

strain criterion were

£L+ = 0.01 in/in CL- 0.008 in/in

+
T 0.004 in/in CT 0.01 in/in

YLT 0.015 in/in

where + denotes tension and - denotes compression. The graphs

described above, for the ply orientation (+ e, 00)s, have been

C
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reproduced in Figs 7-9. Simple comparisons can then be made to the

buckling of shells when prebuckling deformations are included. The

following sections will describe the effects of prebuckling.

Prebuckling Effects For Compression

As previously stated, Cl prebuckling boundary conditions were

used in all test cases. Starting with the shell having L/R = 12,

runs were made at each angle e for Cl buckling boundary conditions.

The results showed that for e = 00, there was a 22% drop in the

buckling load from the series solution with no prebuckling. For all

other ply orientations, the buckling load ranged from 2% to 12% of

a decrease from the series solution. The buckling loads for CC3

buckling turned out to be almost identical to the loads found for

CCl, all within 3%. This similarity is not unexpected since in both

cases, the axial displacement is allowed to move freely. Fig 7 shows

the comparison of the buckling loads determined from the series

solution, and the buckling loads calculated where prebuckling is

considered. Appendix C shows the results in tabular form.

For both CC2 and CC4 conditions, the buckling loads were also

nearly identical, and for ply orientations except 6 = 150, the loads

were the same as for CCl and CC3. For 6 = 150, however, an increase

in the buckling load of approximately 10% over the series solution was

found. That is nearly 20% higher than the value expected from other

observed cases. Attempts to insure that the increase was not caused

by a poor model were made. Steps to check the model included the

following; increasing the load by 50%, increasing the number of nodes

23



+SERIES SOLUTION REF.C1OJ
o X CCI, CC3 BUCKLING
0 " CC2I CC4 BUCKLING

0

ro1: (+ 6, 0,)s

* W MAX. STRhIN
0

C0Do 204.00 67.50 90.00

THEIR (DEG)
C *+ SERIES SOLUTION REF.1(ic

Co X CCI. CC3 BUCKLING
0 w CC2, CC4 BUCKLING

C)

C3J
FNe.C

UDC

00

b. 0 22.50 45.00 67.50 90.00
THETR (DEG)

C Figure 7. Prebuckling Effect - Axial Compression
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by 30% and modeling the entire shell with 989 nodes and a mesh size

of 1.47" x 1.50". In all three cases the buckling load remained the

same for e = 150.

Once it became apparent that the model was good, it became

necessary to explain why the shell, at the angle 6 = 150, was stiffer

than for the case of neglected prebuckling displacements. Investigation

of the prebuckling moments, showed that for 6 = 150, the values of

Mx were higher than for other ply orientations. With the case where

no prebuckling deformation is considered, the only load is the

applied load Nx, and so other prebuckling forces and moments, including

are zero. Taking into account the prebuckling forces and moments,

which arise when prebuckling displacements are considered, the

substantially larger Mx for e = 150 makes for a relatively higher

bending stiffness than for other ply orientations. This relatively

higher bending stiffness, which will resist buckling when the load

was in the axial direction, makes for a higher buckling load relative

to the case where no prebuckling displacement is considered.

Test runs made for the L/R = 7 case were made for the same

boundary conditions and ply orientations. It was found that all

comparisons made for L/R = 12, were similar to those for L/R = 7.

The only difference was that the increased buckling load found at

e = 15 for L/R = 12, was true for both 6 = 150 and e = 30 for

L/R = 7. The prebuckling Kx was higher for both angles as well, and

therefore the same conclusions are drawn. It was also shown that the

change in buckling load due to a different L/R ratio was very small

(see Fig 7), except at 8 = 150 and e = 300. It can therefore be
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concluded that the boundary effect is very slight except at 6 150

and 300.

It became apparent that for both shell geometries, the significant

buckling constraint is u = 0. It is when the axial displacement on

the boundary is held fixed at buckling after it is allowed to move

freely in prebuckling that the variation from series solutions is

obtained.

Comparisons can also be made between the buckling loads and

composite strength, as estimated from maximum strain criterion. For

certain small angles e, the curve for CC and CC3 buckling remain under

the maximum strain curve, where for the same 0 for the series solution

is above (see Fig 7).

Prebuckling Effects For Torsion

The prebuckling and buckling boundary conditions used for torsion

were the same as with axial compression. It was found, as was the

case with axial compression, that for CC and CC3 conditions, the

buckling loads were the same. Similarly with CC2 and CC4.

For cases of L/R = 7 under torsion the values of buckling loads

shown in Fig 8 are higher than the series solution, rang.ng from

15%-28% (recall that the series solution is done for L/R = 12), which

only indicates that a shorter shell demands a greater applied twist to

buckle. The shell length played more of a role in the case of torsion

than it did with axial compression, where very little change in buckling

load occurred due to the change in length (see Figs 7 and 8).

The final investigation was for an L/R = 12 under torsion. It
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Figure 8. Prebuckling Effect - Pure Torsion
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was found that for angles of e = 75o and below, the buckling loads

ranged from 6% to 12% below the series solution, for CC2 and CC4

buckling. For CCl and CC3 buckling the drop ranged from 9% to 22%

(see Fig 9). At e = 900 for all four boundary conditions, the

buckling load was approximately 8% higher than the series solution.

Investigation of the prebuckling stresses showed that there is more

tension in the hoop (v) direction at 0 = 900, than for all other angles

of 6. The tension stress, along with the greater hoop stiffness comes

about because the torsion stress field acts over a larger area in v

00

direction for ply orientation 0 = 90° . This is true because the ply

orientation of 90 is parallel to the v direction. The tension stress

acts to resist torsion buckling and so this added resistance that is

not as great as for other ply angles e, has the effect of increasing

the buckling load relative to the series solution.

Comparing the two L/R ratios for the case of torsion, it is shown

that for 0 > 450 there is a marked difference in the shape of the

curves. For L/R = 7, the maximum buckling load occurs at around

O = 600, the curve then begins to drop off as the boundary conditions

come in to play. For L/R = 12, the curve flattens out at 0 > 750

because of the increase in tension hoop stress.

28



+ SERIES SOLUTION REF.(iO)

X CCI, CC3 BUCKLING
I CC2. CC4 BUCKLING

M
C

S

! I

OL/R12
(+ , 0.)s

2:

CC LMRX. STRRIN

C

CI 00 25 50 *.5 00

THETA (DEG)

( Figure 9. Prebuckling Effect - Pure Torsion

29



r .

V. Conclusions

From the results generated in this thesis, several conclusions

can be drawn concerning the prebuckling effects of composite shells,

with ply orientation of (+ 0, O)s, under axial compression and

Ptorsion.

1) Under axial compression and torsion, prebuckling deformations

generally tend to reduce the buckling load of composite shells.

2) For certain ply orientations, the prebuckling effects can

increase the buckling load.

3) For a shell under axial compression, the u = 0 constraint

in buckling is the important factor in determining the prebuckling

effects.

(_ 4) A change in length of a composite shell affects the

buckling load much more under torsion than for compression, as is

consistent with isotropic shells.

5) For both axial compression and torsion, the buckling

boundary conditions CC and CC3 act nearly the same while CC2 and

CC4 act similarly.

6) For small ply angles 0, under axial compression, the effects

of prebuckling displacement can cause buckling before failure of the

fibers occurs, based on maximum strain criterion. This is also true

under torsion, for angles 0 from about 250 to 350

7) A higher prebuckling bending stiffness for a particular

ply orientation, under axial compression, has the effect of increasing

the buckling load over that of the solution generated with prebuckling

( neglected.
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0I
8) A greater prebuckling tension stress can cause, for 900

oriented fibers, a higher buckling load under applied torsion, than

the load determined when no prebuckling is considered.

9) For the case of torsion, the boundary conditions have

greater affect on the shell with L/R = 7 than with L/R = 12.

-j
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Appendix A

Series Solution Without Prebuckling

The buckling problem of a composite cylindrical shell was solved by

Whitney and Sun (10). They used classical Fourier analysis in conjunc-

tion with FlUgge's shell equations modified for anisotropic laminated

materials. Parts of the development will be shown here to briefly out-

line the procedure. For the complete analysis, see Reference (10).

Consider a laminated cylindrical shell of wall thickness h with a

middle surface radius of R. The coordinate system is in the middle sur-

face with x, e and z measured along the longitudinal, circumferential,

and radial direction, respectively. Denoting partial differentiation

by a comma, the governing equations for the static stability analysis of

laminated anisotropic cylindrical shells based on Fligge's theory (17)

Care of the form (18)

L11u  + L123V + L13w + Nx 'xx
r Nei Uo Ni  (Al)

N '___ xO 0
+T R R wx) + 2 i--6U,xe

iv

12 22 23 x 'xx
Ni Ni (A2)

+-- (w, + vo) + 2 -- (w, + V,0) =O0

R Ni B x x

L 3 U + L 2 3v + L3 3w-N i
13 23 3 x 'xx R T (Ux

0e e Ni (A3)Ve + too 2 ~ 0

- k - - (w x

where u* and vo are the inplane displacements of the middle surface in

the x and e directions, respectively, w is the transverse displacement

of the middle surface, and N N and Ni are initial (prex xr e xe

34



membrane force resultants defined in the usual manner. Looking at three

of the six operators Lij, gives an indication of the complexity of the

problem. The Li operators are defined for symmetric laminates.

A AL 2 A I- ---) + 2 16 xG + A66 (M)

11 A l( )R - 'R2

DD D
1116 66

LR 1 ) 'xxx - _ (  +'xx + 3 xe
A 2L1 ( )

D2( +-A + - ( D26 (

R6 'Ge 12 26 R)L33  RD (,)'606 + (A
2 + - 2)(

SL3fi Dl()xx + 4 D 1 6  + )L + 2 D
33 1 xx R XXXe R2 (12 + 266) )xxBO

D26 + D22 D26  (M)
R+ ( )'xeee j ( )'e8 -2- 2 ('xe

22 +- (A D22)
+ 22-( 22

where A.. and D.. are the inplane stiffness matrix and bending stiffness1J 1J

C matrix, respectively which are defined in Eq. (10). In the present anal-

ysis, initial loads are constant and of the form Nxi = k, N0 , Nsi = k2N09

and Ni  = k3N0, where k. are prescribed constants, and N is a charac-
x 3 0

teristic loading parameter.

CC4 boundary conditions were assumed for the buckling solution (re-

call that prebuckling displacements were neglected), which means

u°(O,o) = v°(0,o) = w(0,6) = Wx(0,oe)
1j= u (L,G) = v°(L,G) = w(L,B) = w, x(L,8) =0 (A7)

where L denotes cylinder length. A solution to Eqs. (Al) - (A3) is a

Fourier series.

The displacementsw becomes

w sin n8 F sin
m=l (A)

+ cos n G cos mi
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where n and m are 1/2 sine or cosine waves in the circumferential and

axial directions respectively. The displacement is continuous in the 8

direction so there is no need to sum over the terms containing 8. The

displacements u* and v* are of similar form as w.

Taking the equilibrium equations (Al) - (A3), along with the dis-

placement functions for u0 , v* and w*, and the boundary conditions, Eq.

(A7), yields in general, two 6 x 6 sets of equations for each value of n.

Setting up a coefficient matrix for the 6 x 6 system and setting it

equal to zero will yield values of n. The buckling load corresponds to

the value of n which yields the lowest value of N 00

Since the Fourier procedure can become very cumbersome, a method to

determine a quick estimate is often used. Whitney and Sun used this

approximation to compare to the Fourier analysis. The approximation as-

SC" sumes for the solution to Eqs. (Al) - (A3) the following form

(m~x

W° = C cos (L-+ ne) (A9)

where u* and v* again have similar forms. Using these equations for the

displacements, and employing the same procedure as the Fourier analysis,

a cubic equation in the dimensionless parameter X, is produced where

N
0E (AlO)

T

Again, the lowest N corresponds to the buckling load.
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Appendix B
User Problems with STAGS

In operating STAGS during this thesis, a number of problems

occurred that were caused by certain input parameters and models. As

a result of the problems, many weeks were taken from research of

composite shells to researching the operation of STAGS. The cases

that are described in this appendix should aid any follow-up work to

this project.

Shift in Eigenvalue

An initial eigenvalue shift (shift on F-3 card) of 1. worked for

all cases in this thesis. Values of 0. and 3. were both unsuccessful

as they had the eigenvalue converge to a negative root. Also, EIGA=

C EIGB=NEIG=l, was also successful.

Rigid Body Displacements

Loading of the full shell with torsion at both the top edge and

bottom edge (in opposite directions!) should not generate displacements

of a rigid body. Unfortunately, it does. The way around this situ-

ation is to hold at least one node on an edge fixed in the circum-

ferential direction. It was discovered that holding all the nodes of

one edge fixed in the circumferential direction made for an "easier to

follow" displacement vector. It is also easier to input. Simply

apply the shear to one edge with an L-2 card (STAGS-C) and let V=O

on the K-2 and K-4 card for the other edge. This will change the

boundary condition on that edge but not the edge with the applied

shear and it should run smoothly.

(
37



Ill-Conditioned Variables

The ill-conditioned variables are due to numerical instability.

The solution is to simply change your mesh size. Increasing the mesh

size by around 15% corrected the problem for the case mentioned in this

thesis.

Additional Information

It is important to remember that when applying a load to two edges

1 of a full shell (axial compression, torsion, etc.), an additional L-2

card is required. It is not an additional load case if the loads on

the two edges are not independent so N LOAD = I on the I-I card.
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Appendix C o d R t o

Buckling Loads and Buckling 
Load Ratios

The following four 
tables indicate 

the buckling loads 
obtained

in this thesis and 
the comparisons to 

the results obtained 
by series

solution.

3

, C
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TABLE 1
L

AXIAL COMPRESSION - = 7.0R

OCCI CC2
Nx  N/Nx IN x 

NN XX ss

00 56933 .7591 63780 .8504

is 82311 .9407 101509 1.1601

300 102247 .8891 116679 1.0146

450 128313 .9684 128379 .9689

600 131515 .9070 131515 .9070

900 66293 .8839 66293 .8839

6 CC3 CC4

N N /N N N /N
x x xSS x x xSS

00 56978 .7597 63810 .8508

150 82320 .9408 102944 1.1765

300 102787 .8938 116725 1.0150

450 128340 .9686 128379 .9689

600 131515 .9070 131515 .9070

900 66293 .8893 66293 .8839
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C TABLE 2

AXIAL COMPRESSION L-12
R

e Cc CC2

NxNX INXsNx NxINxS

0058561 .7808 58733 .7831
150 77901 .8903 95043 1.0862
300 113100 .9887 113724 .9889
450 127306 .9608 127306 .9608
60 0 131385 .9061 131385 .9061
go90 66173 .8823 66173 .8823

8 CC3 CC4
N xN INN S SN N I N x

00 59025 .7870 59040 .7872
150 80448 .9194 98105 1.1212
30 0 113712 .9888 113735 .9890
45 0 127319 .9609 127319 .9609
60 0 131385 .9061 131385 .9061
90 0 66173 .8823 66173 .8823
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( TABLE 3

TORSION L/R =7

8 CCI CC2

N IN N IN

Nxe x8 xeSs Nxo x8 xeSs

150 19533 1.1490 20349 1.1970

450 46308 1.0896 48043 1.1305

600 58939 1.1671 60591 1.1998

750 56916 1.0841 60434 1.1511

90 49866 1.1206 50305 1.1305

8 CC3 CC4

N xeN xIN xeS eN xeIN s
NOx8 Nxe/N8ssxxe $

80 16025 1.0865 16375 1.1102

150 19684 1.1579 20489 1.2053

450 46650 1.0977 48340 1.1374

( 600 59997 1.1881 60757 1.2031

75°  57474 1.0947 60967 1.1613

900 49962 1.1227 50376 1.1320

(
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( TABLE 4

TORSION L/R =12

6 CC3 CC4

Nex IN xeS eN xeIN es

8013070 .8861 13147 .8913

10132.9007 15912 .9360

4090 .7753 37489.81

60 0 42344 .8385 45415 .993
750 47859 .9116489.95

900 47735 1.0727 419102
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